职场文秘网

首页 > 文秘写作 > 工商税务 / 正文

ok,精品解析:18届,全国普通高等学校招生统一考试理科数学(新课标I卷)(解析版)

2020-10-22 17:42:06

 2018年普通高等学校招生全国统一考试 理科数学 注意事项:

 1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。

 3.考试结束后,将本试卷和答题卡一并交回。

 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

 1.设,则 A.

 B.

 C.

 D.

 【答案】C 【解析】 分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模. 详解:

 , 则,故选c. 点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.

 2.已知集合,则 A.

 B.

 C.

 D.

 【答案】B 【解析】 分析:首先利用一元二次不等式的解法,求出的解集,从而求得集合A,之后根据集合补集中元素的特征,求得结果. 详解:解不等式得, 所以, 所以可以求得,故选B. 点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.

 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:

  则下面结论中不正确的是 A. 新农村建设后,种植收入减少 B. 新农村建设后,其他收入增加了一倍以上 C. 新农村建设后,养殖收入增加了一倍 D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 【答案】A 【解析】 【分析】 首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项. 【详解】设新农村建设前的收入为M,而新农村建设后的收入为2M, 则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确; 新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确; 新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确; 新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确; 故选A. 点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.

 4.设为等差数列的前项和,若,,则 A.

 B.

 C.

 D.

 【答案】B 【解析】 分析:首先设出等差数列的公差为,利用等差数列的求和公式,得到公差所满足的等量关系式,从而求得结果,之后应用等差数列的通项公式求得,从而求得正确结果. 详解:设该等差数列的公差为, 根据题中的条件可得, 整理解得,所以,故选B. 点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差的值,之后利用等差数列的通项公式得到与的关系,从而求得结果.

 5.设函数.若为奇函数,则曲线在点处的切线方程为(  ) A.

 B.

 C.

 D.

 【答案】D 【解析】 【详解】分析:利用奇函数偶次项系数为零求得,进而得到的解析式,再对求导得出切线的斜率,进而求得切线方程. 详解:因为函数奇函数,所以,解得, 所以,, 所以, 所以曲线在点处的切线方程为, 化简可得,故选D. 点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果.

 6.在△中,为边上的中线,为的中点,则 A.

 B.

 C.

 D.

 【答案】A 【解析】 分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果. 详解:根据向量的运算法则,可得

  , 所以,故选A. 点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.

 7.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为(

 )

 A.

 B.

 C.

 D. 2 【答案】B 【解析】 【分析】 首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果. 【详解】根据圆柱的三视图以及其本身的特征, 将圆柱的侧面展开图平铺, 可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处, 所以所求的最短路径的长度为,故选B. 点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.

 8.设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则= A. 5 B. 6 C. 7 D. 8 【答案】D 【解析】 【分析】 首先根据题中的条件,利用点斜式写出直线的方程,涉及到直线与抛物线相交,联立方程组,消元化简,求得两点,再利用所给的抛物线的方程,写出其焦点坐标,之后应用向量坐标公式,求得,最后应用向量数量积坐标公式求得结果. 【详解】根据题意,过点(–2,0)且斜率为的直线方程为, 与抛物线方程联立,消元整理得:, 解得,又, 所以, 从而可以求得,故选D. 【点睛】该题考查是有关直线与抛物线相交求有关交点坐标所满足的条件的问题,在求解的过程中,首先需要根据题意确定直线的方程,之后需要联立方程组,消元化简求解,从而确定出,之后借助于抛物线的方程求得,最后一步应用向量坐标公式求得向量的坐标,之后应用向量数量积坐标公式求得结果,也可以不求点M、N的坐标,应用韦达定理得到结果.

 9.已知函数.若g(x)存在2个零点,则a的取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 【答案】C 【解析】 分析:首先根据g(x)存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给的函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,从而求得结果. 详解:画出函数的图像,在y轴右侧的去掉, 再画出直线,之后上下移动, 可以发现当直线过点A时,直线与函数图像有两个交点, 并且向下可以无限移动,都可以保证直线与函数的图像有两个交点, 即方程有两个解, 也就是函数有两个零点, 此时满足,即,故选C.

 点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.

 10.如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则

 A. p1=p2 B. p1=p3 C. p2=p3 D. p1=p2+p3 【答案】A 【解析】 【分析】 首先设出直角三角形三条边长度,根据其为直角三角形,从而得到三边的关系,然后应用相应的面积公式求得各个区域的面积,根据其数值大小,确定其关系,再利用面积型几何概型的概率公式确定出p1,p2,p3的关系,从而求得结果. 【详解】设,则有, 从而可以求得的面积为, 黑色部分的面积为, 其余部分的面积为,所以有, 根据面积型几何概型的概率公式,可以得到,故选A. 点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.

 11.已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直角三角形,则|MN|= A.

 B. 3 C.

 D. 4 【答案】B 【解析】 【详解】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到,根据直角三角形的条件,可以确定直线的倾斜角为或,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得,利用两点间距离公式求得的值. 详解:根据题意,可知其渐近线的斜率为,且右焦点为, 从而得到,所以直线的倾斜角为或, 根据双曲线的对称性,设其倾斜角为, 可以得出直线的方程为, 分别与两条渐近线和联立, 求得, 所以,故选B. 点睛:该题考查的是有关线段长度的问题,在解题的过程中,需要先确定哪两个点之间的距离,再分析点是怎么来的,从而得到是直线的交点,这样需要先求直线的方程,利用双曲线的方程,可以确定其渐近线方程,利用直角三角形的条件得到直线的斜率,结合过右焦点的条件,利用点斜式方程写出直线的方程,之后联立求得对应点的坐标,之后应用两点间距离公式求得结果.

 12.已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为 A.

 B.

 C.

 D.

 【答案】A 【解析】 【分析】 首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果. 【详解】根据相互平行的直线与平面所成的角是相等的, 所以在正方体中, 平面与线所成的角是相等的, 所以平面与正方体的每条棱所在的直线所成角都是相等的, 同理平面也满足与正方体的每条棱所在的直线所成角都是相等, 要求截面面积最大,则截面的位置为夹在两个面与中间的, 且过棱的中点的正六边形,且边长为, 所以其面积为,故选A. 点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.

 二、填空题:本题共4小题,每小题5分,共20分。

 13.若,满足约束条件,则的最大值为_____________. 【答案】6 【解析】 【分析】 首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式,之后在图中画出直线,在上下移动的过程中,结合的几何意义,可以发现直线过B点时取得最大值,联立方程组,求得点B的坐标代入目标函数解析式,求得最大值. 【详解】根据题中所给的约束条件,画出其对应的可行域,如图所示:

  由,可得, 画出直线,将其上下移动, 结合的几何意义,可知当直线在y轴截距最大时,z取得最大值, 由,解得, 此时,故答案为6. 点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.

 14.记为数列的前项和,若,则_____________. 【答案】 【解析】 【分析】 首先根据题中所给的,类比着写出,两式相减,整理得到,从而确定出数列为等比数列,再令,结合的关系,求得,之后应用等比数列的求和公式求得的值. 【详解】根据,可得, 两式相减得,即, 当时,,解得, 所以数列是以-1为首项,以2为公比的等比数列, 所以,故答案是. 点睛:该题考查的是有关数列的求和问题,在求解的过程中,需要先利用题中的条件,类比着往后写一个式子,之后两式相减,得到相邻两项之间的关系,从而确定出该数列是等比数列,之后令,求得数列的首项,最后应用等比数列的求和公式求解即可,只要明确对既有项又有和的式子的变形方向即可得结果.

 15.从位女生,位男生中选人参加科技比赛,且至少有位女生入选,则不同的选法共有_____________种.(用数字填写答案) 【答案】 【解析】 【分析】 首先想到所选的人中没有女生,有多少种选法,再者需要确定从人中任选人的选法种数,之后应用减法运算,求得结果. 【详解】根据题意,没有女生入选有种选法,从名学生中任意选人有种选法, 故至少有位女生入选,则不同的选法共有种,故答案是. 【点睛】该题是一道关于组合计数的题目,并且在涉及到“至多、至少”问题时多采用间接法,一般方法是得出选人的选法种数,间接法就是利用总的减去没有女生的选法种数,该题还可以用直接法,分别求出有名女生和有两名女生分别有多少种选法,之后用加法运算求解.

 16.已知函数,则的最小值是_____________. 【答案】 【解析】 分析:首先对函数进行求导,化简求得,从而确定出函数的单调区间,减区间为,增区间为,确定出函数的最小值点,从而求得代入求得函数的最小值. 详解:,所以当时函数单调减,当时函数单调增,从而得到函数的减区间为,函数的增区间为,所以当时,函数取得最小值,此时,所以,故答案是. 点睛:该题考查的是有关应用导数研究函数的最小值问题,在求解的过程中,需要明确相关的函数的求导公式,需要明白导数的符号与函数的单调性的关系,确定出函数的单调增区间和单调减区间,进而求得函数的最小值点,从而求得相应的三角函数值,代入求得函数的最小值.

 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。

 (一)必考题:60分。

 17.在平面四边形中,,,,. (1)求; (2)若,求. 【答案】(1);(2). 【解析】 【分析】 (1)根据正弦定理可以得到,根据题设条件,求得,结合角的范围,利用同角三角函数关系式,求得; (2)根据题设条件以及第一问的结论可以求得,之后在中,用余弦定理得到所满足的关系,从而求得结果. 【详解】(1)在中,由正弦定理得. 由题设知,,所以. 由题设知,,所以; (2)由题设及(1)知,. 在中,由余弦定理得 . 所以. 【点睛】该题考查是有关解三角形的问题,涉及到的知识点有正弦定理、同角三角函数关系式、诱导公式以及余弦定理,在解题的过程中,需要时刻关注题的条件,以及开方时对于正负号的取舍要从题的条件中寻找角的范围所满足的关系,从而正确求得结果.

 18.如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且. (1)证明:平面平面; (2)求与平面所成角的正弦值.

 【答案】(1)证明见解析;(2). 【解析】 【分析】 (1)首先从题的条件中确定相应的垂直关系,即,,又因为,利用线面垂直的判定定理可以得出平面,又平面,利用面面垂直的判定定理证得平面平面; (2)结合题意,建立相应的空间直角坐标系,正确写出相应的点的坐标,求得平面的法向量,设与平面所成角为,利用线面角的定义,可以求得,得到结果. 【详解】(1)由已知可得,,,又,所以平面. 又平面,所以平面平面; (2)作,垂足为.由(1)得,平面. 以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.

 由(1)可得,.又,,所以.又,,故. 可得. 则 为平面的法向量. 设与平面所成角为,则. 所以与平面所成角的正弦值为. 【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的证明以及线面角的正弦值的求解,属于常规题目,在解题的过程中,需要明确面面垂直的判定定理的条件,这里需要先证明线面垂直,所以要明确线线垂直、线面垂直和面面垂直的关系,从而证得结果;对于线面角的正弦值可以借助于平面的法向量来完成,注意相对应的等量关系即可.

 19.设椭圆的右焦点为,过的直线与交于两点,点的坐标为. (1)当与轴垂直时,求直线的方程; (2)设为坐标原点,证明:. 【答案】(1)的方程为或;(2)证明见解析. 【解析】 【分析】 (1)首先根据与轴垂直,且过点,求得直线的方程为,代入椭圆方程求得点的坐标为或,利用两点式求得直线的方程; (2)分直线与轴重合、与轴垂直、与轴不重合也不垂直三种情况证明,特殊情况比较简单,也比较直观,对于一般情况将角相等通过直线的斜率的关系来体现,从而证得结果. 【详解】(1)由已知得,l的方程为. 由已知可得,点的坐标为或. 所以的方程为或. (2)当与轴重合时,. 当与轴垂直时,为的垂直平分线,所以. 当与轴不重合也不垂直时,设的方程为,, 则,直线、的斜率之和为. 由得. 将代入得. 所以,. 则. 从而,故、的倾斜角互补,所以. 综上,. 【点睛】该题考查的是有关直线与椭圆的问题,涉及到的知识点有直线方程的两点式、直线与椭圆相交的综合问题、关于角的大小用斜率来衡量,在解题的过程中,第一问求直线方程的时候,需要注意方法比较简单,需要注意的就是应该是两个,关于第二问,在做题的时候需要先将特殊情况说明,一般情况下,涉及到直线与曲线相交都需要联立方程组,之后韦达定理写出两根和与两根积,借助于斜率的关系来得到角是相等的结论.

 20.某工厂的某种产品成箱包装,每箱件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立. (1)记件产品中恰有件不合格品的概率为,求的最大值点; (2)现对一箱产品检验了件,结果恰有件不合格品,以(1)中确定的作为的值.已知每件产品的检验费用为元,若有不合格品进入用户手中,则工厂要对每件不合格品支付元的赔偿费用. (i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求; (ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验? 【答案】(1);(2)(i);(ii)应该对余下的产品作检验. 【解析】 【分析】 (1)利用独立重复实验成功次数对应的概率,求得,之后对其求导,利用导数在相应区间上的符号,确定其单调性,从而得到其最大值点,这里要注意的条件; (2)先根据第一问的条件,确定出,在解(i)的时候,先求件数对应的期望,之后应用变量之间的关系,求得赔偿费用的期望;在解(ii)的时候,就通过比较两个期望的大小,得到结果. 【详解】(1)件产品中恰有件不合格品的概率为. 因此. 令,得.当时,;当时,. 所以的最大值点为; (2)由(1)知,. (i)令表示余下的件产品中的不合格品件数,依题意知,,即. 所以. (ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. 由于,故应该对余下的产品作检验. 【点睛】该题考查的是有关随机变量的问题,在解题的过程中,一是需要明确独立重复试验成功次数对应的概率公式,再者就是对其用函数的思想来研究,应用导数求得其最小值点,在做第二问的时候,需要明确离散型随机变量的可取值以及对应的概率,应用期望公式求得结果,再有就是通过期望的大小关系得到结论.

 21.已知函数. (1)讨论的单调性; (2)若存在两个极值点,证明:. 【答案】(1)见解析;(2)见解析 【解析】 分析:(1)首先确定函数的定义域,之后对函数求导,之后对进行分类讨论,从而确定出导数在相应区间上的符号,从而求得函数对应的单调区间; (2)根据存在两个极值点,结合第一问的结论,可以确定,令,得到两个极值点是方程的两个不等的正实根,利用韦达定理将其转换,构造新函数证得结果. 详解:(1)的定义域为,. (i)若,则,当且仅当,时,所以在单调递减. (ii)若,令得,或. 当时,; 当时,.所以在单调递减,在单调递增. (2)由(1)知,存在两个极值点当且仅当. 由于的两个极值点满足,所以,不妨设,则.由于 , 所以等价于. 设函数,由(1)知,在单调递减,又,从而当时,. 所以,即. 点睛:该题考查的是应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性、应用导数研究函数的极值以及极值所满足的条件,在解题的过程中,需要明确导数的符号对单调性的决定性作用,再者就是要先保证函数的生存权,先确定函数的定义域,要对参数进行讨论,还有就是在做题的时候,要时刻关注第一问对第二问的影响,再者就是通过构造新函数来解决问题的思路要明确.

 (二)选考题:共10分。请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。

 22. 在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为. (1)求的直角坐标方程; (2)若与有且仅有三个公共点,求的方程. 【答案】(1) . (2) . 【解析】 分析:(1)就根据,以及,将方程中相关的量代换,求得直角坐标方程; (2)结合方程的形式,可以断定曲线是圆心为,半径为的圆,是过点且关于轴对称的两条射线,通过分析图形的特征,得到什么情况下会出现三个公共点,结合直线与圆的位置关系,得到k所满足的关系式,从而求得结果. 详解:(1)由,得的直角坐标方程为 . (2)由(1)知是圆心为,半径为的圆. 由题设知,是过点且关于轴对称的两条射线.记轴右边的射线为,轴左边的射线为.由于在圆的外面,故与有且仅有三个公共点等价于与只有一个公共点且与有两个公共点,或与只有一个公共点且与有两个公共点. 当与只有一个公共点时,到所在直线的距离为,所以,故或. 经检验,当时,与没有公共点;当时,与只有一个公共点,与有两个公共点. 当与只有一个公共点时,到所在直线的距离为,所以,故或. 经检验,当时,与没有公共点;当时,与没有公共点.

 综上,所求的方程为. 点睛:该题考查的是有关坐标系与参数方程的问题,涉及到的知识点有曲线的极坐标方程向平面直角坐标方程的转化以及有关曲线相交交点个数的问题,在解题的过程中,需要明确极坐标和平面直角坐标之间的转换关系,以及曲线相交交点个数结合图形,将其转化为直线与圆的位置关系所对应的需要满足的条件,从而求得结果.

 23.已知. (1)当时,求不等式的解集; (2)若时不等式成立,求的取值范围. 【答案】(1);(2) 【解析】 分析:(1)将代入函数解析式,求得,利用零点分段将解析式化为,然后利用分段函数,分情况讨论求得不等式的解集为; (2)根据题中所给的,其中一个绝对值符号可以去掉,不等式可以化为时,分情况讨论即可求得结果. 详解:(1)当时,,即 故不等式的解集为. (2)当时成立等价于当时成立. 若,则当时; 若,的解集为,所以,故. 综上,的取值范围为. 点睛:该题考查的是有关绝对值不等式的解法,以及含参的绝对值的式子在某个区间上恒成立求参数的取值范围的问题,在解题的过程中,需要会用零点分段法将其化为分段函数,从而将不等式转化为多个不等式组来解决,关于第二问求参数的取值范围时,可以应用题中所给的自变量的范围,去掉一个绝对值符号,之后进行分类讨论,求得结果.

Tags:

搜索
网站分类
标签列表