首页 > 领导讲话 > 政务讲话 / 正文
五年级上册数学知识点汇总(人教版)
2020-10-10 00:24:30 ℃五年级上册数学知识点汇总(人教版) 第一单元 小数乘法 1、小数乘整数:
@意义——求几个相同加数的和的简便运算。
如:1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。
@计算方法:先把小数扩大成整数;
按整数乘法的法则算出积;
再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:
@意义——就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。
@计算方法:先把小数扩大成整数;
按整数乘法的法则算出积;
再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;
位数不够时,要用0占位。
3、规律:
一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:
⑴四舍五入法;
⑵进一法;
⑶去尾法 5、计算钱数,保留两位小数,表示计算到分;
保留一位小数,表示计算到角。
6、小数四则运算顺序和运算定律跟整数是一样的。
7、运算定律和性质:
@ 加法:
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) @ 减法:
a-b-c=a-(b+c) a-(b+c)=a-b-c @ 乘法:
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】 @ 除法:
a÷b÷c=a÷(b×c) a÷(b×c) =a÷b÷c 第二单元 位 置 1、 数对:
由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。
2、 作用:
一组数对确定唯一 一个点的位置。经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。
(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点) 3、图形左右平移行数不变;
图形上下平移列数不变。
第三单元 小数除法 1、 小数除法的意义:
已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。
2、 小数除以整数的计算方法:
小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
3、 除数是小数的除法的计算方法:
先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
注意:如果被除数的位数不够,在被除数的末尾用0补足。
4、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。
5、除法中的变化规律:
①商不变:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
②除数不变,被除数扩大,商随着扩大。
③被除数不变,除数缩小,商扩大。
6、 循环小数:
一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。 @ 循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32. 7、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。
第四单元 可能性 1、有些事件的发生是确定的,有些是不确定的。
可能 (不能确定) (确定) 可能性 不可能 一定 2、事件发生的机会(或概率)有大小。
可能性 大 数量多 小 数量少 第五单元 简易方程 1、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。
注:加号、减号除号以及数与数之间的乘号不能省略。
2、a×a可以写作a·a或a2 读作a的平方。 注:
2a表示a+a ;
a2表示a×a 3、方程:含有未知数的等式称为方程。
4、使方程左右两边相等的未知数的值,叫做方程的解。
5、求方程的解的过程叫做解方程。
6、解方程原理:天平平衡。
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
7、10个数量关系式:
@ 加法;
和=加数+加数 ;
一个加数=和-两一个加数 @ 减法:
差=被减数-减数 ;
被减数=差+减数 ;
减数=被减数-差 @乘法:
积=因数×因数 ;
一个因数=积÷另一个因数 @ 除法:
商=被除数÷除数 ;
被除数=商×除数 ;
除数=被除数÷商 第六单元 多边形的面积 1、长方形:
@ 周长=(长+宽)×2——【长=周长÷2-宽;
宽=周长÷2-长】 字母表示:C=(a+b)×2 @面积=长×宽 字母表示:S=ab 2、正方形:
@周长=边长×4 字母表示:C=4a @面积=边长×边长 字母表示:S=a2 3、平行四边形的面积=底×高 字母表示:
S=ah 4、三角形的面积=底×高÷2 ——【底=面积×2÷高;
高=面积×2÷底】 字母表示:
S=ah÷2 5、梯形的面积=(上底+下底)×高÷2 字母表示:
S=(a+b)h÷2 上底=面积×2÷高-下底, 下底=面积×2÷高-上底;
高=面积×2÷(上底+下底) 6、平行四边形面积公式推导:
剪拼、平移、割补法 7、 三角形面积公式推导:
旋转、拼凑法 平行四边形可以转化成一个长方形;
两个完全一样的三角形可以拼成一个平行四边形, 长方形的长相当于平行四边形的底;
平行四边形的底相当于三角形的底;
长方形的宽相当于平行四边形的高;
平行四边形的高相当于三角形的高;
长方形的面积等于平行四边形的面积, 平行四边形的面积等于三角形面积的2倍, 因为长方形面积=长×宽,所以平行四边形面积=底×高。 因为平行四边形面积=底×高,所以三角形面积=底×高÷2 8、梯形面积公式推导:旋转、拼凑法 9、两个完全一样的梯形可以拼成一个平行四边形;
平行四边形的底相当于梯形的上下底之和;
平行四边形的高相当于梯形的高;
平行四边形面积等于梯形面积的2倍, 因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2 10、等底等高的平行四边形面积相等;
等底等高的三角形面积相等;
等底等高的平行四边形面积是三角形面积的2倍。
11、长方形框架拉成平行四边形,周长不变,面积变小。
12、组合图形面积(或阴影部分面积):转化成已学的简单图形,通过加、减进行计算(整体-部分=另一部分)。
第七单元 数学广角——植树问题 1、只载一端(封闭线路植树问题) 如图:
或 间隔数=棵树 间隔长×间隔数=全长 全长÷间隔长=间隔数 全长÷间隔数=间隔长 2、两端都载:
如图:
间隔数+1=棵树 间隔长×间隔数=全长 全长÷间隔长=间隔数 全长÷间隔数=间隔长 全长÷间隔长+1=棵数 全长÷(棵树-1)=间隔长 3、两端都不载 如图:
间隔数-1=棵树 间隔长×间隔数=全长 全长÷间隔长=间隔数 全长÷间隔数=间隔长 全长÷间隔长-1=棵数 全长÷(棵树+1)=间隔长 一年级上册数学知识点汇总(人教版) 第一单元 准备课 1、 数一数 数数:数数时,按一定的顺序数,从1开始,数到最后一个物体所对应的那个数,即最后数到几,就是这种物体的总个数。
2、 比多少 同样多:当两种物体一一对应后,都没有剩余时,就说这两种物体的数量同样多。
比多少:当两种物体一一对应后,其中一种物体有剩余,有剩余的那种物体多,没有剩余的那种物体少。
比较两种物体的多或少时,可以用一一对应的方法。
第二单 位 置 1、 认识上、下 体会上、下的含义:从两个物体的位置理解:上是指在高处的物体,下是指在低处的物体。
2、 认识前、后 体会前、后的含义:一般指面对的方向就是前,背对的方向就是后。
同一物体,相对于不同的参照物,前后位置关系也会发生变化。
从而得出:确定两个以上物体的前后位置关系时,要找准参照物,选择的参照物不同,相对的前后位置关系也会发生变化。
3、 认识左、右 以自己的左手、右手所在的位置为标准,确定左边和右边。右手所在的一边为右边,左手所在的一边为左边。
要点提示:在确定左右时,除特殊要求,一般以观察者的左右为准。
第三单元 1--5的认识和加减法 一、 1--5的认识 1、1—5各数的含义:每个数都可以表示不同物体的数量。有几个物体就用几来表示。
2、1—5各数的数序 从前往后数:1、2、3、4、5. 从后往前数:5、4、3、2、1. 3、1—5各数的写法:根据每个数字的形状,按数字在田字格中的位置,认真、工整地进行书写。
二、比大小 1、前面的数等于后面的数,用“=”表示,即3=3,读作3等于3。前面的数大于后面的数,用“>”表示,即3>2,读作3大于2。前面的数小于后面的数,用“<”表示,即3<4,读作3小于4。
2、填“>”或“<”时,开口对大数,尖角对小数。
三、第几 1、确定物体的排列顺序时,先确定数数的方向,然后从1开始点数,数到几,它的顺序就是“第几”。第几指的是其中的某一个。
2、区分“几个”和“第几” “几个”表示物体的多少,而“第几”只表示其中的一个物体。
四、分与合 数的组成:一个数(1除外)分成几和几,先把这个数分成1和几,依次分到几和1为止。例如:5的组成有1和4,2和3,3和2,4和1. 把一个数分成几和几时,要有序地进行分解,防止重复或遗漏。
五、加法 1、加法的含义:把两部分合在一起,求一共有多少,用加法计算。
2、加法的计算方法:计算5以内数的加法,可以采用点数、接着数、数的组成等方法。其中用数的组成计算是最常用的方法。
六、减法 1、减法的含义:从总数里去掉(减掉)一部分,求还剩多少用减法计算。
2、减法的计算方法:计算减法时,可以用倒着数、数的分成、想加算减的方法来计算。
七、0 1、0的意义:0表示一个物体也没有,也表示起点。
2、0的读法:0读作:零 3、0的写法:写0时,要从上到下,从左到右,起笔处和收笔处要相连,并且要写圆滑,不能有棱角。
4、0的加、减法:任何数与0相加都得这个数,任何数与0相减都得这个数,相同的两个数相减等于0. 如:0+8=8 9-0=9 4-4=0 第四单元 认识图形 1、 长方体的特征:长长方方的,有6个平平的面,面有大有小。如图:
2、 长方体的特征:四四方方的,有6个平平的面,面的大小一样。如图:
3、圆柱的特征:直直的,上下一样粗,上下两个圆面大小一样。放在桌子上能滚动。立在桌子上不能滚动。如图:
4、球的特征:圆圆的,很光滑,它的表面是曲面。放在桌子上能向任意方向滚动。
5、立体图形的拼摆:用长方体或正方体能拼组出不同形状的立体图形,在拼好的立体图形中,有一些部位从一个角度是看不到的,要从多个角度去观察。用小圆柱可以拼成更大的圆柱。
第五单元 6—10的认识和加减法 一、6—10的认识:
1、数数:根据物体的个数,可以用6—10各数来表示。数数时,从前往后数也就是从小往大数。
2、10以内数的顺序:
(1)从前往后数:0、1、2、3、4、5、6、7、8、9、10。
(2)从后往前数:10、9、8、7、6、5、4、3、2、1、0。
3、比较大小:按照数的顺序,后面的数总是比前面的数大。
4、序数含义:用来表示物体的次序,即第几个。
5、数的组成:一个数(0、1除外)可以由两个比它小的数组成。如:10由9和1组成。
记忆数的组成时,可由一组数想到调换位置的另一组。
二、6—10的加减法 1、10以内加减法的计算方法:根据数的组成来计算。
2、一图四式:根据一副图的思考角度不同,可写出两道加法算式和两道减法算式。
3、“大括号”下面有问号是求把两部分合在一起,用加法计算。“大括号 ”上面的一侧有问号是求从总数中去掉一部分,还剩多少,用减法计算。
三、连加连减 1、连加的计算方法:计算连加时,按从左到右的顺序进行,先算前两个数的和,再与第三个数相加。
2、连减的计算方法:计算连减时,按从左到右的顺序进行,先算前两个数的差,再用所得的数减去第三个数。
四、加减混合 加减混合的计算方法:计算时,按从左到右的顺序进行,先把前两个数相加(或相减),再用得数与第三个数相减(或相加)。
第六单元 11—20各数的认识 1、数数:根据物体的个数,可以用11—20各数来表示。
2、数的顺序:11—20各数的顺序是:11、12、13、14、15、16、17、18、19、20、 3、比较大小:可以根据数的顺序比较,后面的数总比前面的数大,或者利用数的组成进行比较。
4、11—20各数的组成:都是由1个十和几个一组成的,20由2个十组成的。如:1个十和5个一组成15。
5、数位:从右边起第一位是个位,第二位是十位。
6、11—20各数的读法:从高位读起,十位上是几就读几十,个位上是几就读几。20的读法,20读作:二十。
7、写数:写数时,对照数位写,有1个十就在十位上写1,有2个十就在十位上写2.有几个一,就在个位上写几,个位上一个单位也没有,就写0占位。
8、十加几、十几加几与相应的减法:
(1)10加几和相应的减法的计算方法:10加几得十几,十几减几得十,十几减十得几。
如:10+5=15 17-7=10 18-10=8 (2)十几加几和相应的减法的计算方法:计算十几加几和相应的减法时,可以利用数的组成来计算,也可以把个位上的数相加或相减,再加整十数。
(3)加减法的各部分名称:
在加法算式中,加号前面和后面的数叫加数,等号后面的数叫和。
在减法算式中,减号前面的数叫被减数,减号后面的数叫减数,等号后面的数叫差。
9、解决问题:
求两个数之间有几个数,可以用数数法,也可以用画图法。还可以用计算法(用大数减小数再减1的方法来计算)。
第七单元 认识钟表 1、认识钟面:
钟面:钟面上有12个数,有时针和分针。
分针:钟面上又细又长的指针叫分针。
时针:钟面上又粗又短的指针叫时针。
2、钟表的种类:日常生活中的钟表一般分两种,一种:挂钟,钟面上有12个数,分针和时针。另一种:电子表,表面上有两个点“:”,“:”的左边和右边都有数。
3、认识整时:
分针指向12,时针指向几就是几时;
电子表上,“:”的右边是“00”时表示整时,“:”的左边是几就是几时。
3、 整时的写法:
整时的写法有两种:写成几时或电子表数字的形式。如:8时或8:00 第八单元 20以内的进位加法 一、9加几计算方法:计算9加几的进位加法,可以采用“点数”“接着数”“凑十法”等方法进行计算,其中“凑十法”比较简便。
利用“凑十法”计算9加几时,把9凑成10需要1,就把较小数拆成1和几,10加几就得十几。
二、8、7、6加几的计算方法:(1)点数;
(2)接着数;
(3)凑十法。可以“拆大数、凑小数”,也可以“拆小数、凑大数”。
三、5、4、3、2加几的计算方法:
(1)“拆大数、凑小数”。(2)“拆小数、凑大数”。
四、解决问题:
(1)解决问题时,可以从不同的角度观察、分析、从而找到不同的解题方法。
(2)求总数的实际问题,用加法计算。
猜你喜欢
- 2024-01-18 2024年度XX区政务办工作总结和2024年工作思路
- 2024-01-13 (8篇)政务服务工作存在问题及建议【优秀范文】
- 2024-01-10 有关政务服务效能提升“双十百千”工程典型经验案例(精选文档)
- 2024-01-08 2024年在政务服务便民热线工作推进会上发言材料
- 2024-01-08 2024在全市政务督查系统工作座谈会上交流发言
- 2024-01-05 2024年度(2篇)政务服务中心工作总结和2024年工作思路
- 2024-01-04 2024年关于开展“基层政务服务提升年”活动实施方案
- 2024-01-04 2024中华人民共和国公职人员政务处分法(全文)(精选文档)
- 2023-12-29 2024年有关于营商环境“政务服务”评价指标完成情况报告(2024年)
- 2023-12-27 领导在全市政务督查系统工作座谈会上交流发言(精选文档)
- 搜索
-
- 党小组会议个人发言2020(三篇) 08-06
- 退队申请书 退出校卫队申请书1000 12-12
- 端正执法理念剖析材料 10-28
- 工作提醒函 06-05
- 教育乱收费整治工作总结 04-21
- 党支部问题清单及整改措施 07-15
- 春节慰问离退休老干部老党员实施方案 06-15
- 【入党申请书5】 自愿放弃入党说明范文 12-29
- 集团公司团干部培训班试题(答案) 08-11
- 2020年度落实全面从严治党主体责任任务 10-12
- 网站分类
-
- 标签列表
-