首页 > 入党材料 > 入党写作指导 / 正文
几何证明定理(精选多篇)
2020-02-09 04:04:42 ℃第一篇:高中几何证明定理
高中几何证明定理
一.直线与平面平行的(判定)
1.判定定理.平面外一条直线如果平行于平面内的一条直线,那么这条直线与这个平面平行.
2.应用:反证法(证明直线不平行于平面)
二.平面与平面平行的(判定)
1.判定定理:一个平面上两条相交直线都平行于另一个平面,那么这两个平面平行
2.关键:判定两个平面是否有公共点
三.直线与平面平行的(性质)
1.性质:一条直线与一个平面平行,则过该直线的任一与此平面的交线与该直线平行2.应用:过这条直线做一个平面与已知平面相交,那么交线平行于这条直线
四.平面与平面平行的(性质)
1.性质:如果两个平行平面同时和第三个平面相交,那么他们的交线平行
2.应用:通过做与两个平行平面都相交的平面得到交线,实现线线平行
五:直线与平面垂直的(定理)
1.判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直
2.应用:如果一条直线与一个平面垂直,那么这条直线垂直于这个平面内所有的直线(线面垂直→线线垂直)
六.平面与平面的垂直(定理)
1.一个平面过另一个平面的垂线,则这两个平面垂直
(或者做二面角判定)
2.应用:在其中一个平面内找到或做出另一个平面的垂线,即实现线面垂直证面面垂直的转换
七.平面与平面垂直的(性质)
1.性质一:垂直于同一个平面的两条垂线平行
2.性质二:如果两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直
3.性质三:如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面内的直线,在第一个平面内(性质三没什么用,可以不用记)
以上,是立体几何的定理和性质整理.是一定要记住的基本!。
想要变-态的这里多的是--
欧拉定理&欧拉线&欧拉公式(不一样)
九点圆定理
葛尔刚点
费马定理(费马点(也叫做费尔马点))
海伦-公式
共角比例定理
张角定理
帕斯卡定理
曼海姆定理
卡诺定理
芬斯勒-哈德维格不等式(几何的)
外森匹克不等式(同上)
琴生不等式(同上)
塞瓦定理
梅涅劳斯定理
斯坦纳定理
托勒密定理
分角线定理(与角分线定理不同)
斯特瓦尔特定理
切点弦定理
西姆松定理。
第二篇:几何证明定理
几何证明定理
一.直线与平面平行的(判定)
1.判定定理.平面外一条直线如果平行于平面内的一条直线,那么这条直线与这个平面平行.
2.应用:反证法(证明直线不平行于平面)
二.平面与平面平行的(判定)
1.判定定理:一个平面上两条相交直线都平行于另一个平面,那么这两个平面平行
2.关键:判定两个平面是否有公共点
三.直线与平面平行的(性质)
1.性质:一条直线与一个平面平行,则过该直线的任一与此平面的交线与该直线平行2.应用:过这条直线做一个平面与已知平面相交,那么交线平行于这条直线
四.平面与平面平行的(性质)
1.性质:如果两个平行平面同时和第三个平面相交,那么他们的交线平行
2.应用:通过做与两个平行平面都相交的平面得到交线,实现线线平行
五:直线与平面垂直的(定理)
1.判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直
2.应用:如果一条直线与一个平面垂直,那么这条直线垂直于这个平面内所有的直线(线面垂直→线线垂直)
六.平面与平面的垂直(定理)
1.一个平面过另一个平面的垂线,则这两个平面垂直
(或者做二面角判定)
2.应用:在其中一个平面内找到或做出另一个平面的垂线,即实现线面垂直证面面垂直的转换
七.平面与平面垂直的(性质)
1.性质一:垂直于同一个平面的两条垂线平行
2.性质二:如果两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直
3.性质三:如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面内的直线,在第一个平面内(性质三没什么用,可以不用记)
以上,是立体几何的定理和性质整理.是一定要记住的基本!!
31推论1等腰三角形顶角的平分线平分底边并且垂直于底边
32等腰三角形的顶角平分线、底边上的中线和高互相重合
33推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35推论1三个角都相等的三角形是等边三角形
36推论2有一个角等于60°的等腰三角形是等边三角形
37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38直角三角形斜边上的中线等于斜边上的一半
39定理线段垂直平分线上的点和这条线段两个端点的距离相等
40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42定理1关于某条直线对称的两个图形是全等形
43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c
47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形
48定理四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理n边形的内角的和等于(n-2)×180°
51推论任意多边的外角和等于360°
52平行四边形性质定理1平行四边形的对角相等
53平行四边形性质定理2平行四边形的对边相等
54推论夹在两条平行线间的平行线段相等
55平行四边形性质定理3平行四边形的对角线互相平分
56平行四边形判定定理1两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3对角线互相平分的四边形是平行四边形
59平行四边形判定定理4一组对边平行相等的四边形是平行四边形
60矩形性质定理1(更多请关注wwW.HAoWORD.coM)矩形的四个角都是直角
61矩形性质定理2矩形的对角线相等
62矩形判定定理1有三个角是直角的四边形是矩形。
第三篇:初一常用几何证明的定理
初一常用几何证明的定理总结
平面直角坐标系各个象限内和坐标轴的点的坐标的符号规律:
(1)x轴将坐标平面分为两部分,x轴上方的纵坐标为正数;
x轴下方的点纵坐标为负数。即第一、二象限及y轴正方向(也称y轴正半轴)上的点的纵坐标为正数;
第三、四象限及y轴负方向(也称y轴负半轴)上的点的纵坐标为负数。
反之,如果点p(a ,b)在x轴上方,则b>0;
如果p(a ,b)在x轴下方,则b<0。
(2)y轴将坐标平面分成两部分,y轴左侧的点的横坐标为负数;
y轴右侧的点的横坐标为正数。即第
二、三象限和x轴的负半轴上的点的横坐标为负数;
第一、四象限和x轴正半轴上的点的横坐标为正数。
(3)规定坐标原点的坐标为(0 ,0)
(4
(5)
第四篇:初一常用几何证明的定理总结
初一常用几何证明的定理总结
平面直角坐标系各个象限内和坐标轴的点的坐标的符号规律:
(1)x轴将坐标平面分为两部分,x轴上方的纵坐标为正数;
x轴下方的点纵坐标为负数。即第一、二象限及y轴正方向(也称y轴正半轴)上的点的纵坐标为正数;
第三、四象限及y轴负方向(也称y轴负半轴)上的点的纵坐标为负数。
反之,如果点p(a ,b)在x轴上方,则b>0;
如果p(a ,b)在x轴下方,则b<0。
(2)y轴将坐标平面分成两部分,y轴左侧的点的横坐标为负数;
y轴右侧的点的横坐标为正数。即第二、三象限和x轴的负半轴上的点的横坐标为负数;
第一、四象限和x轴正半轴上的点的横坐标为正数。
(3)规定坐标原点的坐标为(0 ,0) (4
(5)
对称点的坐标特征:
(1)关于x轴对称的两点:横坐标相同,纵坐标互为相反数。如点p(x 1 ,y 1)与q(x 2 ,y 2)?x1=x2
关于x轴对称,则?反之也成立。如p(2 ,-3)与q(2 ,3)关于x轴对称。
y?y?0?12
(2)关于y轴对称的两点:纵坐标相同,横坐标互为相反数。如点p(x 1 ,y 1)与q(x 2 ,y 2)?y1=y2
关于y轴对称,则?反之也成立。如p(2 ,-3)与q(-2 ,-3)关于y轴对称。
?x1?x2?0
(3)关于原点对称的两点:纵坐标、横坐标都互为相反数。如点p(x 1 ,y 1)与q(x 2 ,y 2)关?x1+x2?0
于原点对称,则?反之也成立。如p(2 ,-3)与q(-2 ,3)关于原点对称。
y?y?0?12
第五篇:立体几何证明的向量公式和定理证明
高考数学专题——立体几何
遵循先证明后计算的原则,即融推理于计算之中,突出模型法,平移法等数学方法。注重考查转化与化归的思想。
立体几何证明的向量公式和定理证明
附表2
频道推荐相关范文:
2014.3.29几何证明---基本公里定理本身的证明
立体几何证明题公理定理集锦
李明波四点定理的平面几何证明
浅谈用向量法证明立体几何中的几个定理
选修4-1 几何证明选讲第2讲 圆周角定理与圆的切线
- 上一篇:守法证明(精选多篇)
- 下一篇:出生证明有什么用(精选多篇)
猜你喜欢
- 2024-01-19 2024年最新“组合拳”写作提纲(30例)
- 2024-01-16 2024文稿写作“八忌八宜”(范文推荐)
- 2024-01-16 漫谈文稿写作
- 2024-01-16 2024年度新员工带教指导手册(精选文档)
- 2024-01-08 “笔”字写作提纲(30例)【优秀范文】
- 2024-01-07 2024年最新“组合拳”写作提纲(30例)
- 2023-12-29 “关”字写作提纲(120例)
- 2023-12-29 2024年(30例)“队伍建设”经验写作提纲【完整版】
- 2023-12-28 (270例)“调查研究”经验写作提纲(范文推荐)
- 2023-12-27 2024年度(30例)“招”字写作提纲
- 搜索
-
- 2020年“防风险、守底线”专题会议个人 10-28
- 在第三次中央新疆工作座谈会上的重要讲 10-10
- 2021党小组会议记录(官方版) 06-18
- 社区党建党务知识测试题(答案) 09-16
- 关于推进市域社会治理现代化工作的实施 10-05
- 全面从严治党专题调研方案 04-21
- 学习习总关于坚持和完善人民代表大会制 07-14
- 初二数学证明题(精选多篇) 02-09
- “坚持党的绝对领导,永远做党和人民的 06-10
- 党员党组织关系转出细则 10-17
- 网站分类
-
- 标签列表
-