首页 > 条据书信 > 辞职信 / 正文
大学物理(I)期末试卷,04级
2020-10-06 20:18:08 ℃2004级大学物理(I)期末试卷 院系:
班级:_____________ 姓名:___________ 学号:_____________ 日期: 2005 年 7 月 4 日 一 选择题(共30分) 1.(本题3分) 某物体的运动规律为,式中的k为大于零的常量.当时,初速为v0,则速度与时间t的函数关系是 (A) , (B) , (C) , (D) [ ] 2.(本题3分) A、B两条船质量都为M,首尾相靠且都静止在平静的湖面上,如图所示.A、B两船上各有一质量均为m的人,A船上的人以相对于A船的速率u跳到B船上,B船上的人再以相对于B船的相同速率u跳到A船上. 取如图所示x坐标,设A、B船所获得的速度分别为vA、vB,下述结论中哪一个是正确的? (A) vA = 0,vB = 0. (B) vA = 0,vB > 0. (C) vA < 0,vB > 0. (D) vA < 0,vB = 0. (E) vA > 0,vB > 0. [ ] 3.(本题3分) 一人造地球卫星到地球中心O的最大距离和最小距离分别是RA和RB.设卫星对应的角动量分别是LA、LB,动能分别是EKA、EKB,则应有 (A) LB > LA,EKA > EKB. (B) LB > LA,EKA = EKB. (C) LB = LA,EKA = EKB. (D) LB < LA,EKA = EKB. (E) LB = LA,EKA < EKB. [ ] 4.(本题3分) 水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)? (A) 66.7%. (B) 50%. (C) 25%. (D) 0. [ ] 5.(本题3分) 两种不同的理想气体,若它们的最概然速率相等,则它们的 (A) 平均速率相等,方均根速率相等. (B) 平均速率相等,方均根速率不相等. (C) 平均速率不相等,方均根速率相等. (D) 平均速率不相等,方均根速率不相等. [ ] 6.(本题3分) 如图,一定量的理想气体,由平衡状态A变到平衡状态B (pA = pB ),则无论经过的是什么过程,系统必然 (A) 对外作正功. (B) 内能增加. (C) 从外界吸热. (D) 向外界放热. [ ] 7.(本题3分) 在简谐波传播过程中,沿传播方向相距为(l 为波长)的两点的振动速度必定 (A) 大小相同,而方向相反. (B) 大小和方向均相同. (C) 大小不同,方向相同. (D) 大小不同,而方向相反.[ ] 8.(本题3分) 沿着相反方向传播的两列相干波,其表达式为 和 . 叠加后形成的驻波中,波节的位置坐标为 (A) . (B) . (C) . (D) . 其中的k = 0,1,2,3, …. [ ] 9.(本题3分) 如图a所示,一光学平板玻璃A与待测工件B之间形成空气劈尖,用波长l=500 nm (1 nm=10-9 m)的单色光垂直照射.看到的反射光的干涉条纹如图b所示.有些条纹弯曲部分的顶点恰好与其右边条纹的直线部分的连线相切.则工件的上表面缺陷是 (A) 不平处为凸起纹,最大高度为500 nm. (B) 不平处为凸起纹,最大高度为250 nm. (C) 不平处为凹槽,最大深度为500 nm. (D) 不平处为凹槽,最大深度为250 nm. [ ] 10.(本题3分) 一束自然光自空气射向一块平板玻璃(如图),设入射角等于布儒斯特角i0,则在界面2的反射光 (A) 是自然光. (B) 是线偏振光且光矢量的振动方向垂直于入射面. (C) 是线偏振光且光矢量的振动方向平行于入射面. (D) 是部分偏振光. [ ] 二 填空题(共30分) 11.(本题3分) 设质点的运动学方程为 (式中R、w 皆为常量) 则质点的=___________________,dv /dt =_____________________. 12.(本题3分) 如图所示,钢球A和B质量相等,正被绳牵着以w0=4 rad/s的角速度绕竖直轴转动,二球与轴的距离都为r1=15 cm.现在把轴上环C下移,使得两球离轴的距离缩减为r2=5 cm.则 钢球的角速度w=__________. 13.(本题3分) 如图所示,轻弹簧的一端固定在倾角为a的光滑斜面的底端E,另一端与质量为m的物体C相连,O点为弹簧原长处,A点为物体C的平衡位置,x0为弹簧被压缩的长度.如果在一外力作用下,物体由A点沿斜面向上缓慢移动了2x0距离而到达B点,则该外力所作 功为____________________. 14.(本题5分) 已知f(v)为麦克斯韦速率分布函数,vp为分子的最概然速率.则 表示___________________________________________;
速率v>vp的分子的平 均速率表达式为______________________. 15.(本题4分) 一简谐振动的表达式为,已知 t = 0时的初位移为0.04 m,初速度为0.09 m/s,则振幅A =_____________ ,初相f =________________. 16.(本题3分) 1 -2 4 3 2 o -1 t(s) x(cm) x1 x2 1 2 已知两个简谐振动的振动曲线如图所示.两 简谐振动的最大速率之比为_________________. 17.(本题3分) 一平凸透镜,凸面朝下放在一平玻璃板上.透镜刚好与玻璃板接触.波长分别为l1=600 nm和l2=500 nm的两种单色光垂直入射,观察反射光形成的牛顿 环.从中心向外数的两种光的第五个明环所对应的空气膜厚度之差为______nm. 18.(本题3分) 在单缝夫琅禾费衍射实验中,波长为l的单色光垂直入射在宽度a=5 l的单缝上.对应于衍射角j 的方向上若单缝处波面恰好可分成 5个半波带,则衍射角 j =______________________________. 19.(本题3分) 波长为l=480.0 nm的平行光垂直照射到宽度为a=0.40 mm的单缝上,单缝后透镜的焦距为f=60 cm,当单缝两边缘点A、B射向P点的两条光线在P点的相位差为p时,P点离透镜焦点O 的距离等于_______________________. 三 计算题(共40分) 20.(本题10分) 质量为M1=24 kg的圆轮,可绕水平光滑固定轴转动,一轻绳缠绕于轮上,另一端通过质量为M2=5 kg的圆盘形定滑轮悬有m=10 kg的物体.求当重物由静止开始下降了h=0.5 m时, (1) 物体的速度;
(2) 绳中张力. (设绳与定滑轮间无相对滑动,圆轮、定滑轮绕通过轮心且垂直于横截面的水平光滑轴的转动惯量分别为,) 21.(本题10分) 一定量的理想气体在标准状态下体积为 1.0×10-2 m3,求下列过程中气体吸收的热量:
(1) 等温膨胀到体积为 2.0×10-2 m3;
(2) 先等体冷却,再等压膨胀到 (1) 中所到达的终态. 已知1 atm= 1.013×105 Pa,并设气体的CV = 5R / 2. 22.(本题10分) 一平面简谐波沿Ox轴正方向传播,波的表达式为 , 而另一平面简谐波沿Ox轴负方向传播,波的表达式为 求:(1) x = l /4 处介质质点的合振动方程;
(2) x = l /4 处介质质点的速度表达式. 23.(本题10分) 用钠光(l=589.3 nm)垂直照射到某光栅上,测得第三级光谱的衍射角为60°. (1) 若换用另一光源测得其第二级光谱的衍射角为30°,求后一光源发光的波长. (2) 若以白光(400 nm-760 nm) 照射在该光栅上,求其第二级光谱的张角. (1 nm= 10-9 m) 2004级大学物理(I)试卷解答 2005-7-4考 一 选择题(共30分) 1.(C);
2.(C);
3.(E);
4.(C);
5.(A);
6.(B);
7.(A);
8.(D);
9.(B);
10.(B). 二 填空题(共30分) 11.(本题3分) -wRsinw t+wRcosw t;
0 12. (本题3分) 36 rad/s 参考解:系统对竖直轴的角动量守恒. 13. (本题3分) 2 mg x0 sin a 14. (本题5分) 速率区间0 ~ vp的分子数占总分子数的百分率;
15. (本题4分) 0.05 m -0.205p(或-36.9°) 16. (本题3分) 1∶1 17. (本题3分) 225 18. (本题3分) 30° 参考解:asinj = l , j = 30° 19. (本题3分) 0.36 mm 三 计算题(共40分) 20. (本题3分) (本题10分) 解:各物体的受力情况如图所示. 由转动定律、牛顿第二定律及运动学方程,可列出以下联立方程:
T1R=J1b1= T2r-T1r=J2b2= mg-T2=ma , a=Rb1=rb2 , v 2=2ah 求解联立方程,得 m/s2 =2 m/s T2=m(g-a)=58 N T1==48 N 21. (本题3分) (本题10分) 解:(1) 如图,在A→B的等温过程中,, ∴ 将p1=1.013×105 Pa,V1=1.0×10-2 m3和V2=2.0×10-2 m3 代入上式,得 QT≈7.02×102 J (2) A→C等体和C→B等压过程中 ∵A、B两态温度相同,∴ ΔEABC = 0 ∴ QACB=WACB=WCB=P2(V2-V1) 又 p2=(V1/V2)p1=0.5 atm ∴ QACB =0.5×1.013×105×(2.0-1.0)×10-2 J≈5.07×102 J 22. (本题3分) (本题10分) 解:(1) x = l /4处 , ∵ y1,y2反相 ∴ 合振动振幅 , 且合振动的初相f 和y2的 初相一样为. 合振动方程 (2) x = l /4处质点的速度 23. (本题10分) 解:(1) (a + b) sinj = 3l a + b =3l / sinj , j=60° a + b =2l'/sin =30° 3l / sinj =2l'/sin l'=510.3 nm (2) (a + b) =3l / sinj =2041.4 nm =sin-1(2×400 / 2041.4) (l=400nm) =sin-1(2×760 / 2041.4) (l=760nm) 白光第二级光谱的张角 Dj = = 25°
猜你喜欢
- 2023-10-23 2023年最新幼儿园辞职信7篇(完整)
- 2023-10-22 2023年度教师简单辞职信7篇
- 2023-10-22 2023辞职信格式,-,辞职信写法4篇
- 2023-10-20 简单的酒店辞职信8篇【通用文档】
- 2023-10-20 护士个人的辞职信11篇(全文完整)
- 2023-09-29 2023年度法定代表人辞职报告书5篇
- 2023-09-25 2023年销售人员辞职申请书3篇(2023年)
- 2023-09-25 2023年医生个人辞职申请书8篇
- 2023-09-25 实用辞职申请书模板9篇
- 2023-08-25 学校食堂工作人员辞职信3篇【精选推荐】
- 搜索
-
- 节目哎呀呀的串词_庆祝六一儿童节节目 11-25
- 学习建设社会主义文化强国的心得体会六 08-30
- 银行疫情应急预案 06-14
- 1495,2020年作风纪律整顿工作会议记录2篇 10-07
- 关于进一步规范标识标牌的通知 10-26
- 部编版四年级语文下册全册八单元1-23课 08-01
- 浅析“放管服”改革方面存在的问题及建 02-19
- 2021年党建党章党规知识竞赛题库及答案 10-07
- 新成立党支部工作总结 09-30
- 学习《中国共产党党内关怀帮扶办法》精 07-09
- 网站分类
-
- 标签列表
-